
UF_ROUTE_create_rcp_point() 函数的参数解释说明、函数详细用法,以及实例代码演示
购买与咨询 NX 二次开发视频教程,请联系微信号:13890821008 QQ号:85585969
函数结构:
UF_ROUTE_create_rcp_point
(
tag_t point,
tag_t * new_rcp
)
函数说明:
创建连接到以前没有RCP的现有点新RCP存在于这个位置。否则返回以前创建的RCP。
函数参数:
第1个参数为输入:
point代表参数变量,tag_t 为输入参数类型,现有的点对象标识符。
第2个参数为输出:
new_rcp代表参数变量,tag_t * 为输出参数类型,在这一点上的新创建的RCP的对象标识符。 RCP的位置从该点在每个更新的。万一一个RCP存在于该位置,则返回此RCP的对象标识符。
UF_ROUTE_create_rcp_point函数实例代码演示:
[quote]
#include <string.h>
#include <stdio.h>
#include <uf_defs.h>
#include <uf.h>
#include <uf_assem.h>
#include <uf_curve.h>
#include <uf_part.h>
#include <uf_route.h>
#include <uf_dirpath.h>
#define UF_CALL(X)(report_error( __FILE__, __LINE__, #X, (X)))
static int report_error( char *file, int line, char *call, int irc )
{
if(irc)
{
char err[133],
msg[133];
sprintf( msg, "*** ERROR code %d at line %d in %s:\n+++",
irc, line, file );
UF_get_fail_message( irc, err );
UF_print_syslog( msg, FALSE );
UF_print_syslog( err, FALSE );
UF_print_syslog( "\n", FALSE );
UF_print_syslog( call, FALSE );
UF_print_syslog( ";\n", FALSE );
if( !UF_UI_open_listing_window() )
{
UF_UI_write_listing_window( msg );
UF_UI_write_listing_window( err );
UF_UI_write_listing_window( "\n" );
UF_UI_write_listing_window( call );
UF_UI_write_listing_window( ";\n" );
}
}
return( irc );
}
/*ARGSUSED*/
void ufusr(char *param, int *retcod, int parm_len)
{
double stock_and_part_nps = 3.0;
char *stock_material = "ASTM A312 TP304(W)";
char *stock_schedule = "80S";
char *std_part_material = "ASTM A403 WP316L(W)";
char *std_part_rating = "10S";
char *app_view_name = NULL;
const char *app_view_symb = "UGII_ROUTE_MECH_APP_VIEW";
const char *part_search_symb = "UGII_ROUTE_MECH_PART_PATH";
char *elbow_node = "ELBOWS";
char *old_app_view_name = NULL;
char full_name[MAX_FSPEC_SIZE];
double pos1[3] = { 0.0, 0.0, 0.0 };
double pos2[3] = { 10.0, 0.0, 0.0 };
double pos3[3] = { 10.0, 10.0, 0.0 };
double pos4[3] = { 10.0, 10.0, 10.0 };
double pos5[3] = { 10.0, 0.0, 10.0 };
double origin[3] = { 0.0, 0.0, 0.0 };
double csys[6] = { 1.0, 0.0, 0.0, 0.0, 1.0, 0.0 };
double radius = 2.0;
double ratio = 2.0;
int n_stock_charx;
int n_stock_matches;
int n_std_part_charx;
int n_std_part_matches;
int inx;
int style = UF_ROUTE_STYLE_SIMPLE;
int num_segs;
int num_places;
int part_units;
tag_t point;
tag_t line;
tag_t rcps[5];
tag_t segs[7];
tag_t stock_data;
tag_t anchor;
tag_t cross;
tag_t corner;
tag_t work_part;
tag_t fit_part;
tag_t inst_id;
tag_t occ;
tag_t work_part_comp;
tag_t work_part_occ;
tag_t dir_path;
tag_t part_tag;
UF_CURVE_line_t line_s;
UF_ROUTE_charx_t stock_charx[3];
UF_ROUTE_charx_t std_part_charx[4];
UF_ROUTE_part_lib_part_p_t stock_matches;
UF_ROUTE_part_lib_part_p_t std_part_matches;
UF_ROUTE_application_view_p_t old_app_view;
UF_ROUTE_application_view_p_t app_view;
UF_PART_load_status_t error_code ;
UF_ROUTE_place_solution_p_t *places;
UF_CALL( UF_initialize() );
part_tag = UF_PART_ask_display_part();
if ( part_tag == NULL_TAG ) return;
UF_PART_ask_units( part_tag, &part_units);
if ( part_units == UF_PART_METRIC )
{
// Use 25 mm NPS instead of 3 inches.
stock_and_part_nps = 10.0;
// Change the elbow node to the DIN elbows.
elbow_node = "DIN_PIP_ELBOW";
// Change the material and rating to one of the DIN standards.
stock_material = "ST37-2";
std_part_material = "ST37-2";
std_part_rating = "16";
// Update the positions from inch to millimeters
pos1[0] *= 25.4;
pos1[1] *= 25.4;
pos1[2] *= 25.4;
pos2[0] *= 25.4;
pos2[1] *= 25.4;
pos2[2] *= 25.4;
pos3[0] *= 25.4;
pos3[1] *= 25.4;
pos3[2] *= 25.4;
pos4[0] *= 25.4;
pos4[1] *= 25.4;
pos4[2] *= 25.4;
pos5[0] *= 25.4;
pos5[1] *= 25.4;
pos5[2] *= 25.4;
}
/* This example must be run from the Routing Mechanical application */
old_app_view = UF_ROUTE_ask_current_app_view( );
if ( old_app_view == NULL ) return;
UF_ROUTE_ask_app_view_name( old_app_view, &old_app_view_name );
if ( strcmp( old_app_view_name, "Routing Mechanical" ) != 0 )
{
UF_print_syslog( "This sample must be run from the Routing Mechanical application.", FALSE );
return;
}
/* Load and set the application view *** Routing -> Base */
UF_CALL( UF_translate_variable( app_view_symb, &app_view_name ) );
UF_CALL( UF_ROUTE_load_app_view( app_view_name, &app_view ) );
UF_CALL( UF_ROUTE_set_current_app_view( app_view ) );
/* Set the search path for locating Routing (Base) parts / stock */
UF_CALL( UF_DIRPATH_create_from_env ( part_search_symb, &dir_path ) );
UF_CALL( UF_ROUTE_set_part_search_path ( dir_path ) );
/* Create the RCPs at absolute positions */
UF_CALL( UF_ROUTE_create_rcp_position( pos1, &rcps[0] ) );
UF_CALL( UF_ROUTE_create_rcp_position( pos2, &rcps[1] ) );
/* Create RCPs at existing point */
UF_CALL( UF_CURVE_create_point( pos3, &point ) );
UF_CALL( UF_ROUTE_create_rcp_point( point, &rcps[2] ) );
/* Create the Segments through these RCPs */
UF_CALL( UF_ROUTE_create_seg_thru_rcps( rcps[0], rcps[1], &segs[0] ) );
UF_CALL( UF_ROUTE_create_seg_thru_rcps( rcps[1], rcps[2], &segs[1] ) );
/* Create a curve and use this object to create a segment */
for( inx = 0 ; inx < 3 ; inx++ )
{
line_s.start_point[inx] = pos4[inx];
line_s.end_point[inx] = pos5[inx];
}
UF_CALL( UF_CURVE_create_line( &line_s, &line ) );
/* Create the Segments through RCPs that follows a curve
In this case the RCPs should be created along the curve parameter */
UF_CALL( UF_ROUTE_create_rcp_curve_parm( line, 0, &rcps[3] ) );/* Curve start parm=0 */
UF_CALL( UF_ROUTE_create_rcp_curve_parm( line, 1, &rcps[4] ) );/* Curve end parm=1 */
UF_CALL( UF_ROUTE_create_seg_thru_rcps( rcps[2], rcps[3], &segs[2] ) ); /* Connecting
Segment */
UF_CALL( UF_ROUTE_create_seg_on_curve( line, rcps[3], rcps[4], &segs[3] ) );
/* Set up the characteristics for the stock we wish to assign */
stock_charx[0].type = UF_EPLIB_CHARX_TYPE_REAL;
strcpy (stock_charx[0].title, "NPS");
stock_charx[0].value.r_value = stock_and_part_nps;
if ( part_units == UF_PART_METRIC )
{
stock_charx[1].type = UF_EPLIB_CHARX_TYPE_STR;
strcpy (stock_charx[1].title, "PIPE_MATERIAL");
stock_charx[1].value.s_value = stock_material;
n_stock_charx = 2;
}
else
{
stock_charx[1].type = UF_EPLIB_CHARX_TYPE_STR;
strcpy (stock_charx[1].title, "MATERIAL");
stock_charx[1].value.s_value = stock_material;
stock_charx[2].type = UF_EPLIB_CHARX_TYPE_STR;
strcpy (stock_charx[2].title, "SCHEDULE");
stock_charx[2].value.s_value = stock_schedule;
n_stock_charx = 3;
}
/* Find the stock we want in the Routing Part Library */
UF_CALL( UF_ROUTE_match_charx_in_plib( "STOCK",
n_stock_charx,
stock_charx,
&n_stock_matches,
&stock_matches ) );
if ( n_stock_matches == 0 ) return;
/* Locate (or load) the stock data which matches our criteria */
UF_CALL( UF_ROUTE_load_stock_by_charx( &stock_matches[0],
"",
style,
&stock_data,
&anchor,
&cross ) );
UF_CALL( UF_ROUTE_free_match_results( n_stock_matches,
stock_matches ) );
/* Create a bend corner at one of the RCP junctions */
UF_CALL( UF_ROUTE_create_bend_by_radius( rcps[1], radius,
&corner, &segs[4] ) );
/* Assigns the stock data to segments */
num_segs = 4;
UF_CALL( UF_ROUTE_assign_stock( stock_data, anchor,
cross, num_segs, segs ) );
/* Create a bend corner by the ratio of stock dia to the bend radius
The stock gets automatically updated at the bend */
UF_CALL( UF_ROUTE_create_bend_by_ratio( rcps[2], ratio,
&corner, &segs[5] ) );
/* Set up the characteristics for the Standard part we wish to place */
std_part_charx[0].type = UF_EPLIB_CHARX_TYPE_REAL;
strcpy (std_part_charx[0].title, "NPS");
std_part_charx[0].value.r_value = stock_and_part_nps;
std_part_charx[1].type = UF_EPLIB_CHARX_TYPE_REAL;
strcpy (std_part_charx[1].title, "ELBOW_ANG");
std_part_charx[1].value.r_value = 90.0;
std_part_charx[2].type = UF_EPLIB_CHARX_TYPE_STR;
strcpy (std_part_charx[2].title, "FITTING_MATERIAL");
std_part_charx[2].value.s_value = std_part_material;
std_part_charx[3].type = UF_EPLIB_CHARX_TYPE_STR;
strcpy (std_part_charx[3].title, "RATING");
std_part_charx[3].value.s_value = std_part_rating;
n_std_part_charx = sizeof( std_part_charx ) / sizeof( std_part_charx[0] );
UF_CALL( UF_ROUTE_match_charx_in_plib( elbow_node, n_std_part_charx,
std_part_charx, &n_std_part_matches,
&std_part_matches ) );
if ( n_std_part_matches == 0 ) return;
UF_CALL( UF_ROUTE_load_part_by_charx( std_part_matches[0].num_charx,
std_part_matches[0].charx, &fit_part ) );
/* Add the elbow as a component of the work part */
UF_CALL( UF_PART_ask_part_name( fit_part, full_name ) );
work_part = UF_ASSEM_ask_work_part( );
UF_CALL( UF_ASSEM_add_part_to_assembly( work_part, full_name,
NULL, NULL, origin,
csys, -1, &inst_id,
&error_code ) );
/*
For the following Routing operations of setting the characteristics
of the fitting part and for placing it within the Routing, we
use the part occurrence of the fitting in the part occurrence tree
that is "rooted" at the work part. This is because the Routing
characteristics and placement functions expect this particular
part occurrence.
*/
work_part_comp = UF_ASSEM_ask_parent_of_instance( inst_id );
work_part_occ = UF_ASSEM_ask_root_part_occ( work_part_comp );
occ = UF_ASSEM_ask_part_occ_of_inst( work_part_occ, inst_id ) ;
/*
We now have the part occurrence of the fitting in the work part's
part occurrence tree. So we can attach the Routing characteristics
to this part occurrence and place this occurrence within the
Routing.
*/
UF_CALL( UF_ROUTE_set_characteristics( occ, std_part_matches[0].num_charx,
std_part_matches[0].charx ) );
/* Place the elbow at the fourth RCP */
num_places = 0; places = NULL;
UF_CALL( UF_ROUTE_solve_places( rcps[3], occ,
&num_places, &places ) );
UF_CALL( UF_ROUTE_ask_places_transform( places[0], origin, csys ) );
UF_CALL( UF_ASSEM_reposition_instance( inst_id, origin, csys ) );
UF_CALL( UF_ROUTE_free_places( num_places, places ) );
UF_CALL( UF_ROUTE_set_part_in_stock( occ ) );
UF_terminate();
return;
}
[/quote]
-
无