点击查看详细介绍

UF_ROUTE_load_part_by_name() 函数的参数解释说明、函数详细用法,以及实例代码演示

misnn 7年前 554 0

购买与咨询 NX 二次开发视频教程,请联系微信号:13890821008  QQ号:85585969  


函数结构:
UF_ROUTE_load_part_by_name
(
char * part_name,
char * member_name,
tag_t * part
)

函数说明:
加载指定的部分,或部分家庭成员,如果成员名称是不NULL,到当前会话。该部分是加载,但没有取得当前工作的一部分。返回的部分标记随后可使用大会功能,这部分添加作为A组分大会在路由中后来的“位置”。

函数参数:
第1个参数为输入:
输入char * 字符类型的参数,参数的变量格式为part_name,部分的名称来加载。这可能是一个简单的部分文件名或零件族部分的名称。

第2个参数为输入:
输入char * 字符类型的参数,参数的变量格式为member_name,通过part_name指定部分的部分家庭成员的名字是一个家庭的一部分,否则返回null。

第3个参数为输出:
part代表参数变量,tag_t * 为输出参数类型,加载的部分或NULL标记的一部分标记,如果没有装好了。

UF_ROUTE_load_part_by_name函数实例代码演示:
[quote]
#include <string.h>
#include <stdio.h>

#include <uf_defs.h>
#include <uf.h>
#include <uf_assem.h>
#include <uf_curve.h>
#include <uf_part.h>

#include <uf_route.h>
#include <uf_dirpath.h>

#define UF_CALL(X)(report_error( __FILE__, __LINE__, #X, (X)))

static int report_error( char *file, int line, char *call, int irc )
{
if(irc)
{
char err[133],
msg[133];
sprintf( msg, "*** ERROR code %d at line %d in %s:\n+++",
irc, line, file );
UF_get_fail_message( irc, err );

UF_print_syslog( msg, FALSE );
UF_print_syslog( err, FALSE );
UF_print_syslog( "\n", FALSE );
UF_print_syslog( call, FALSE );
UF_print_syslog( ";\n", FALSE );

if( !UF_UI_open_listing_window() )
{
UF_UI_write_listing_window( msg );
UF_UI_write_listing_window( err );
UF_UI_write_listing_window( "\n" );
UF_UI_write_listing_window( call );
UF_UI_write_listing_window( ";\n" );
}
}
return( irc );
}

/*ARGSUSED*/
void ufusr(char *param, int *retcod, int parm_len)
{
double stock_and_part_nps = 3.0;
char *stock_material = "ASTM A312 TP304(W)";
char *stock_schedule = "80S";
char *std_part_material = "ASTM A403 WP316L(W)";
char *std_part_rating = "10S";
char *app_view_name = NULL;
const char *app_view_symb = "UGII_ROUTE_MECH_APP_VIEW";
const char *part_search_symb = "UGII_ROUTE_MECH_PART_PATH";
char *elbow_node = "ELBOWS";
char *old_app_view_name = NULL;
char full_name[MAX_FSPEC_SIZE];

double pos1[3] = { 0.0, 0.0, 0.0 };
double pos2[3] = { 10.0, 0.0, 0.0 };
double pos3[3] = { 10.0, 10.0, 0.0 };
double pos4[3] = { 10.0, 10.0, 10.0 };
double pos5[3] = { 10.0, 0.0, 10.0 };
double origin[3] = { 0.0, 0.0, 0.0 };
double csys[6] = { 1.0, 0.0, 0.0, 0.0, 1.0, 0.0 };
double radius = 2.0;
double ratio = 2.0;

int n_stock_charx;
int n_stock_matches;
int n_std_part_charx;
int n_std_part_matches;
int inx;
int style = UF_ROUTE_STYLE_SIMPLE;
int num_segs;
int num_places;
int part_units;

tag_t point;
tag_t line;
tag_t rcps[5];
tag_t segs[7];

tag_t stock_data;
tag_t anchor;
tag_t cross;
tag_t corner;
tag_t work_part;
tag_t fit_part;
tag_t inst_id;
tag_t occ;
tag_t work_part_comp;
tag_t work_part_occ;
tag_t dir_path;
tag_t part_tag;

UF_CURVE_line_t line_s;
UF_ROUTE_charx_t stock_charx[3];
UF_ROUTE_charx_t std_part_charx[4];
UF_ROUTE_part_lib_part_p_t stock_matches;
UF_ROUTE_part_lib_part_p_t std_part_matches;
UF_ROUTE_application_view_p_t old_app_view;
UF_ROUTE_application_view_p_t app_view;
UF_PART_load_status_t error_code ;
UF_ROUTE_place_solution_p_t *places;

UF_CALL( UF_initialize() );

part_tag = UF_PART_ask_display_part();
if ( part_tag == NULL_TAG ) return;

UF_PART_ask_units( part_tag, &part_units);

if ( part_units == UF_PART_METRIC )
{
// Use 25 mm NPS instead of 3 inches.
stock_and_part_nps = 10.0;

// Change the elbow node to the DIN elbows.
elbow_node = "DIN_PIP_ELBOW";

// Change the material and rating to one of the DIN standards.
stock_material = "ST37-2";
std_part_material = "ST37-2";
std_part_rating = "16";

// Update the positions from inch to millimeters
pos1[0] *= 25.4;
pos1[1] *= 25.4;
pos1[2] *= 25.4;

pos2[0] *= 25.4;
pos2[1] *= 25.4;
pos2[2] *= 25.4;

pos3[0] *= 25.4;
pos3[1] *= 25.4;
pos3[2] *= 25.4;

pos4[0] *= 25.4;
pos4[1] *= 25.4;
pos4[2] *= 25.4;

pos5[0] *= 25.4;
pos5[1] *= 25.4;
pos5[2] *= 25.4;
}

/* This example must be run from the Routing Mechanical application */
old_app_view = UF_ROUTE_ask_current_app_view( );
if ( old_app_view == NULL ) return;

UF_ROUTE_ask_app_view_name( old_app_view, &old_app_view_name );
if ( strcmp( old_app_view_name, "Routing Mechanical" ) != 0 )
{
UF_print_syslog( "This sample must be run from the Routing Mechanical application.", FALSE );
return;
}

/* Load and set the application view *** Routing -> Base */
UF_CALL( UF_translate_variable( app_view_symb, &app_view_name ) );
UF_CALL( UF_ROUTE_load_app_view( app_view_name, &app_view ) );
UF_CALL( UF_ROUTE_set_current_app_view( app_view ) );

/* Set the search path for locating Routing (Base) parts / stock */
UF_CALL( UF_DIRPATH_create_from_env ( part_search_symb, &dir_path ) );
UF_CALL( UF_ROUTE_set_part_search_path ( dir_path ) );

/* Create the RCPs at absolute positions */
UF_CALL( UF_ROUTE_create_rcp_position( pos1, &rcps[0] ) );
UF_CALL( UF_ROUTE_create_rcp_position( pos2, &rcps[1] ) );

/* Create RCPs at existing point */
UF_CALL( UF_CURVE_create_point( pos3, &point ) );
UF_CALL( UF_ROUTE_create_rcp_point( point, &rcps[2] ) );

/* Create the Segments through these RCPs */
UF_CALL( UF_ROUTE_create_seg_thru_rcps( rcps[0], rcps[1], &segs[0] ) );
UF_CALL( UF_ROUTE_create_seg_thru_rcps( rcps[1], rcps[2], &segs[1] ) );

/* Create a curve and use this object to create a segment */
for( inx = 0 ; inx < 3 ; inx++ )
{
line_s.start_point[inx] = pos4[inx];
line_s.end_point[inx] = pos5[inx];
}
UF_CALL( UF_CURVE_create_line( &line_s, &line ) );

/* Create the Segments through RCPs that follows a curve
In this case the RCPs should be created along the curve parameter */
UF_CALL( UF_ROUTE_create_rcp_curve_parm( line, 0, &rcps[3] ) );/* Curve start parm=0 */
UF_CALL( UF_ROUTE_create_rcp_curve_parm( line, 1, &rcps[4] ) );/* Curve end parm=1 */

UF_CALL( UF_ROUTE_create_seg_thru_rcps( rcps[2], rcps[3], &segs[2] ) ); /* Connecting
Segment */
UF_CALL( UF_ROUTE_create_seg_on_curve( line, rcps[3], rcps[4], &segs[3] ) );

/* Set up the characteristics for the stock we wish to assign */

stock_charx[0].type = UF_EPLIB_CHARX_TYPE_REAL;
strcpy (stock_charx[0].title, "NPS");
stock_charx[0].value.r_value = stock_and_part_nps;

if ( part_units == UF_PART_METRIC )
{
stock_charx[1].type = UF_EPLIB_CHARX_TYPE_STR;
strcpy (stock_charx[1].title, "PIPE_MATERIAL");
stock_charx[1].value.s_value = stock_material;

n_stock_charx = 2;
}
else
{
stock_charx[1].type = UF_EPLIB_CHARX_TYPE_STR;
strcpy (stock_charx[1].title, "MATERIAL");
stock_charx[1].value.s_value = stock_material;

stock_charx[2].type = UF_EPLIB_CHARX_TYPE_STR;
strcpy (stock_charx[2].title, "SCHEDULE");
stock_charx[2].value.s_value = stock_schedule;

n_stock_charx = 3;
}

/* Find the stock we want in the Routing Part Library */
UF_CALL( UF_ROUTE_match_charx_in_plib( "STOCK",
n_stock_charx,
stock_charx,
&n_stock_matches,
&stock_matches ) );
if ( n_stock_matches == 0 ) return;

/* Locate (or load) the stock data which matches our criteria */
UF_CALL( UF_ROUTE_load_stock_by_charx( &stock_matches[0],
"",
style,
&stock_data,
&anchor,
&cross ) );

UF_CALL( UF_ROUTE_free_match_results( n_stock_matches,
stock_matches ) );

/* Create a bend corner at one of the RCP junctions */
UF_CALL( UF_ROUTE_create_bend_by_radius( rcps[1], radius,
&corner, &segs[4] ) );

/* Assigns the stock data to segments */
num_segs = 4;
UF_CALL( UF_ROUTE_assign_stock( stock_data, anchor,
cross, num_segs, segs ) );

/* Create a bend corner by the ratio of stock dia to the bend radius
The stock gets automatically updated at the bend */
UF_CALL( UF_ROUTE_create_bend_by_ratio( rcps[2], ratio,
&corner, &segs[5] ) );

/* Set up the characteristics for the Standard part we wish to place */

std_part_charx[0].type = UF_EPLIB_CHARX_TYPE_REAL;
strcpy (std_part_charx[0].title, "NPS");
std_part_charx[0].value.r_value = stock_and_part_nps;

std_part_charx[1].type = UF_EPLIB_CHARX_TYPE_REAL;
strcpy (std_part_charx[1].title, "ELBOW_ANG");
std_part_charx[1].value.r_value = 90.0;

std_part_charx[2].type = UF_EPLIB_CHARX_TYPE_STR;
strcpy (std_part_charx[2].title, "FITTING_MATERIAL");
std_part_charx[2].value.s_value = std_part_material;

std_part_charx[3].type = UF_EPLIB_CHARX_TYPE_STR;
strcpy (std_part_charx[3].title, "RATING");
std_part_charx[3].value.s_value = std_part_rating;

n_std_part_charx = sizeof( std_part_charx ) / sizeof( std_part_charx[0] );

UF_CALL( UF_ROUTE_match_charx_in_plib( elbow_node, n_std_part_charx,
std_part_charx, &n_std_part_matches,
&std_part_matches ) );
if ( n_std_part_matches == 0 ) return;

UF_CALL( UF_ROUTE_load_part_by_charx( std_part_matches[0].num_charx,
std_part_matches[0].charx, &fit_part ) );

/* Add the elbow as a component of the work part */
UF_CALL( UF_PART_ask_part_name( fit_part, full_name ) );
work_part = UF_ASSEM_ask_work_part( );
UF_CALL( UF_ASSEM_add_part_to_assembly( work_part, full_name,
NULL, NULL, origin,
csys, -1, &inst_id,
&error_code ) );

/*
For the following Routing operations of setting the characteristics
of the fitting part and for placing it within the Routing, we
use the part occurrence of the fitting in the part occurrence tree
that is "rooted" at the work part. This is because the Routing
characteristics and placement functions expect this particular
part occurrence.
*/
work_part_comp = UF_ASSEM_ask_parent_of_instance( inst_id );
work_part_occ = UF_ASSEM_ask_root_part_occ( work_part_comp );
occ = UF_ASSEM_ask_part_occ_of_inst( work_part_occ, inst_id ) ;

/*
We now have the part occurrence of the fitting in the work part's
part occurrence tree. So we can attach the Routing characteristics
to this part occurrence and place this occurrence within the
Routing.
*/
UF_CALL( UF_ROUTE_set_characteristics( occ, std_part_matches[0].num_charx,
std_part_matches[0].charx ) );

/* Place the elbow at the fourth RCP */
num_places = 0; places = NULL;
UF_CALL( UF_ROUTE_solve_places( rcps[3], occ,
&num_places, &places ) );

UF_CALL( UF_ROUTE_ask_places_transform( places[0], origin, csys ) );

UF_CALL( UF_ASSEM_reposition_instance( inst_id, origin, csys ) );

UF_CALL( UF_ROUTE_free_places( num_places, places ) );

UF_CALL( UF_ROUTE_set_part_in_stock( occ ) );

UF_terminate();

return;
}


[/quote]

0

最新回复 (0)
请登录后发表新帖